@prefix azonOnto: <http://id.e-science.pl/ontologies/azonOnto#> .
@prefix collection: <http://id.e-science.pl/vocab/collection/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix kv: <http://id.e-science.pl/vocab/kv/> .
@prefix person: <http://id.e-science.pl/vocab/person/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix records: <http://id.e-science.pl/records/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix unit: <http://id.e-science.pl/vocab/unit/> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

records:49846 a azonOnto:Article ;
    azonOnto:acceptanceDate "2019-08-29"^^xsd:date ;
    azonOnto:authorInfo [ a azonOnto:AuthorInfo ;
            azonOnto:author person:12978 ;
            azonOnto:position 1 ],
        [ a azonOnto:AuthorInfo ;
            azonOnto:author person:12968 ;
            azonOnto:position 2 ] ;
    azonOnto:collection collection:1,
        collection:11 ;
    azonOnto:description "Software maintenance is an essential step in software development life cycle. Nowadays, softwarecompanies spend approximately 45% of total cost in maintenance activities. Large software projects maintain bug repositories to collect, organize and resolve bug reports. Sometimes it is difficult to reproduce the reported bug with the information present in a bug report and thus this bug is marked with resolution non-reproducible (NR). When NR bugs are reconsidered, a few of them might get fixed (NR-to-fix) leaving the others with the same resolution (NR). To analyse the behaviour of developers towards NR-to-fix and NR bugs, the sentiment analysis of NR bug report textual contents has been conducted. The sentiment analysis of bug reports shows that NR bugs’sentiments incline towards more negativity than reproducible bugs. Also, there is a noticeable opinion drift found in the sentiments of NR-to-fix bug reports. Observations driven from this analysis were an inspiration to develop a model that can judge the fixability of NR bugs. Thusa framework, NRFixer, which predicts the probability of NR bug fixation, is proposed. NRFixer wasevaluated with two dimensions. The first dimension considers meta-fields of bug reports (model-1) and the other dimension additionally incorporates the sentiments (model-2) of developers forprediction. Both models were compared using various machine learning classifiers (Zero-R, naiveBayes, J48, random tree and random forest). The bug reports of Firefox and Eclipse projects were used to test NRFixer. In Firefox and Eclipse projects, J48 and Naive Bayes classifiers achieve the best prediction accuracy, respectively. It was observed that the inclusion of sentiments inthe prediction model shows a rise in the prediction accuracy ranging from 2 to 5% for various  classifiers."@en ;
    azonOnto:destinationGroup "naukowcy"@pl,
        "ogół społeczeństwa"@pl,
        "studenci"@pl ;
    azonOnto:doi [ a azonOnto:IdentifierInfo ;
            azonOnto:name "DOI"^^xsd:string ;
            azonOnto:value "10.5277/e-Inf170105"^^xsd:string ] ;
    azonOnto:fileInfo [ a azonOnto:FileInfo ;
            azonOnto:name "e-Informatica_Vol.11_2017_Issue_1_Art_5.zip"^^xsd:string ;
            azonOnto:uri "https://data.e-science.pl/49846/e-Informatica_Vol.11_2017_Issue_1_Art_5.zip"^^xsd:anyURI ] ;
    azonOnto:harmfulContent false ;
    azonOnto:keywordInfo [ a azonOnto:KeywordInfo ;
            azonOnto:name "informatyka"@pl ;
            azonOnto:uri "http://plwordnet.pwr.wroc.pl/wordnet/synset/14075"^^xsd:anyURI ],
        [ a azonOnto:KeywordInfo ;
            azonOnto:name "adaptacja"@pl ;
            azonOnto:uri "http://plwordnet.pwr.wroc.pl/wordnet/synset/14176"^^xsd:anyURI ] ;
    azonOnto:language "Angielski"^^xsd:string ;
    azonOnto:licenseInfo [ a azonOnto:LicenseInfo ;
            azonOnto:name "ID-NC-ND"^^xsd:string ;
            azonOnto:uri "https://azon.e-science.pl/licencje/ID-NC-ND_PWr.pdf"^^xsd:anyURI ] ;
    azonOnto:numeration "Vol. 11, issue 1"^^xsd:string ;
    azonOnto:pageFrom 109 ;
    azonOnto:pageTo 120 ;
    azonOnto:partner [ a azonOnto:Organization ;
            azonOnto:name "Politechnika Wrocławska"^^xsd:string ] ;
    azonOnto:publicationYear 2017 ;
    azonOnto:publisher "Oficyna Wydawnicza Politechniki Wrocławskiej"^^xsd:string ;
    azonOnto:relatedLink [ a azonOnto:RelatedLinkInfo ;
            azonOnto:name "e-Informatica Software Engineering Journal, Vol. 11, 2017"^^xsd:string ;
            azonOnto:uri "https://www.dbc.wroc.pl/dlibra/publication/41450/edition/37396"^^xsd:anyURI ] ;
    azonOnto:scientificDiscipline "dziedzina nauk technicznych / informatyka (2011)"@pl ;
    azonOnto:source [ a azonOnto:Source ;
            azonOnto:title "e-Informatica: Software Engineering Journal"@pl ] ;
    azonOnto:submitter [ a azonOnto:Person ;
            azonOnto:name "Magdalena Kruczek"^^xsd:string ] ;
    azonOnto:title "NRFixer: sentiment based model for predictingthe fixability of non-reproducible bugs"@pl .

RDF/XML

TURTLE

JSON-LD