@prefix azonOnto: <http://id.e-science.pl/ontologies/azonOnto#> .
@prefix collection: <http://id.e-science.pl/vocab/collection/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix kv: <http://id.e-science.pl/vocab/kv/> .
@prefix person: <http://id.e-science.pl/vocab/person/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix records: <http://id.e-science.pl/records/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix unit: <http://id.e-science.pl/vocab/unit/> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
kv:52206 a skos:Concept ;
rdfs:seeAlso "https://www.researchgate.net/publication/242014355_A_New_Approach_for_Computing_Zadeh%27s_Extension_Principle"@en ;
skos:definition "One of the most fundamental principles in fuzzy set theory. It provides a powerful technique in order to extend a real continuous function to a function accepting fuzzy sets as arguments. If the function is monotone, then the endpoints of the output can be determined quite easily."@en ;
skos:inScheme kv:keywordsVocabulary ;
skos:prefLabel "Zadeh`s extension principle"@en .